Sensory nerve-mediated immediate nasal responses to inspired acrolein.
نویسندگان
چکیده
To investigate the role of sensory C-fiber stimulation and tachykinin release in the immediate nasal responses to the sensory irritant acrolein, the upper respiratory tract of the urethan-anesthetized male Fischer 344 rat was isolated via insertion of an endotracheal tube, and acrolein-laden air [2, 5, 10, or 20 parts/million (ppm)] was drawn continuously through that site at a flow rate of 100 ml/min for 50 min. Uptake of the inert vapor acetone was measured throughout the exposure to assess nasal vascular function. Plasma protein extravasation into nasal tissue and nasal lavage fluid was also assessed via injection of Evans blue dye. At 20 ppm, acrolein induced 1) a twofold increase in acetone uptake, indicative of vasodilation, followed by a progressive decline toward basal levels and 2) increased plasma protein extravasation, as indicated by dye leakage into nasal tissue and nasal lavage. These responses were inhibited by capsaicin pretreatment and the neurokinin type 1 antagonist N-acetyltrifluoromethyl tryptophan benzyl ester and were potentiated by the peptidase inhibitors phosphoramidon and captopril, suggesting that these responses were mediated by tachykinin. At lower exposure concentrations, acrolein was without effect on dye leakage but produced vasodilation, as indicated by increased acetone uptake. The responses at the lower concentrations were inhibited by capsaicin pretreatment, implicating nasal sensory C-fiber involvement, but were not influenced by N-acetyltrifluoromethyl tryptophan benzyl ester, phosphoramidon, or captopril, suggesting the involvement of a mediator other than the tachykinins substance P and neurokinin A.
منابع مشابه
Immediate sensory nerve-mediated respiratory responses to irritants in healthy and allergic airway-diseased mice.
The immediate responses of the upper respiratory tract (URT) to the irritants acrolein and acetic acid were examined in healthy and allergic airway-diseased C57Bl/6J mice. Acrolein (1.1 ppm) and acetic acid (330 ppm) vapors induced an immediate increase in flow resistance, as measured in the surgically isolated URT of urethane-anesthetized healthy animals. Acrolein, but not acetic acid, induced...
متن کاملCharacterization of bladder sensory neurons in the context of myelination, receptors for pain modulators, and acute responses to bladder inflammation
Bladder sensation is mediated by lumbosacral dorsal root ganglion neurons and is essential for normal voiding and nociception. Numerous electrophysiological, structural, and molecular changes occur in these neurons following inflammation. Defining which neurons undergo these changes is critical for understanding the mechanism underlying bladder pain and dysfunction. Our first aim was to define ...
متن کاملAcute respiratory responses of the mouse to chlorine.
In human subjects 15-min exposure to 0.5-1.0 ppm chlorine gas causes a nasal obstructive response in the absence of a marked sensation of irritation. The current investigation was designed to assess the response of the mouse for comparative purposes. Respiratory physiological responses were measured in female C57Bl/6J mice exposed to 0.8 to 4.0 ppm chlorine gas. Chlorine was a potent sensory ir...
متن کاملAcrolein depletes the neuropeptides CGRP and substance P in sensory nerves in rat respiratory tract.
The mammalian respiratory tract is densely innervated by autonomic and sensory nerves around airways and blood vessels. Subsets of these nerves contain a number of putative neurotransmitter peptides, such as substance P and calcitonin gene-related peptide (CGRP) in sensory nerves and vasoactive intestinal polypeptide (VIP), possibly serving autonomic functions. CGRP is also found in endocrine c...
متن کاملTransient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation
BACKGROUND The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 87 5 شماره
صفحات -
تاریخ انتشار 1999